A Sustainable Future is Within Reach Our mission is to accelerate the world's transition to sustainable energy. To accomplish this mission, we need to design products that are far superior to their fossil fuel counterparts in every way, source and manufacture them as sustainably as possible and sell as many of them as we can. We believe the best way to do this is by offering an ecosystem of products that comprehensively addresses our world's clean energy generation, storage and transportation needs. Every vehicle we sell, battery we install and solar panel we add moves the needle in the direction of a sustainable future. Thank you to the Tesla team, customers and supporters for bringing us closer to our goal in 2022. Impact Report 2022 Foreword ## Master Plan Part 3 A MESSAGE OF HOPE ## 80% of global energy comes from fossil fuels Today's energy economy is dirty. 80% of our energy comes from burning fossil fuels, which leads to rising global temperatures and CO₂ levels, as well as premature deaths from pollution. Furthermore, the current energy economy is wasteful—with only one third of global energy produced delivering useful work or heat. ## A sustainable energy economy requires 50% less total energy Most people assume that an electrified civilization requires the same or more energy than a fossil fuel economy. That is not true. A sustainable energy economy is clean and far more efficient—requiring only half the primary energy of a fossil fuel economy. ## The transition to sustainable energy will reduce global mining and extraction needs #### **Current Mining Extraction** = 1 Gigaton 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 00 00 00 00 00 00 00 00 Sustainable Economy Materials All Other Materials Mined Fossil Fuel Extraction #### **Fully Sustainable Economy** Note: These are the minerals that we focus our responsible battery sourcing efforts on—particularly lithium, nickel and cobalt. ## The investment required is manageable and achievable Total land use, capital investment and resource requirements are achievable. Additionally, a sustainable energy economy actually requires less investment and less material extraction than continuing today's unsustainable path. **240 TWh** Storage 0.2% Land area required \$10T Manufacturing investment 5 **30 TWh** Renewable power 1/2 The energy required 10% 2022 world GDP Zero Insurmountable resource challenges #### Beyond Tesla While we are uniquely focused on accelerating the world's transition to sustainability, a full transition will require efforts far beyond Tesla. In Master Plan Part 3, we highlight five key areas that we believe can most dramatically advance the shift to sustainability. ## The path to 100% sustainability by 2050 To accomplish this five-step plan, the world's annual deployment of solar and wind and annual production of batteries will need to continue to grow. We believe these growth rates are achievable. Solar & Wind Deployment (TW/yr) 3 X increase 2022 Deployment 0.36 Required Deployment 1.0 Per Year Vehicle, Stationary & Thermal Battery Production (TWh/yr) 29 X increase 2022 Deployment 0.54 Required Deployment 16 Per Year Electric Vehicle Production (Millions/yr) 11 X increase 2022 Deployment 8 Required Deployment 85 Per Year ### Total solar, wind and battery installed base and investment needed 30.4 TW #### **Vehicle & Stationary Batteries** 240 TW #### **Manufacturing Capex** \$10_T ## Environmental Impact THE FUTURE IS ELECTRIC Displacing Fossil Fuels 19-25 Carbon Impact of Our Products 26-39 Carbon Impact of Our Operations 40-49 Water and Waste 50-58 13.4 Mmt of CO₂e emissions avoided 100% renewable Supercharger network -30% Greenhouse gas emissions per vehicle -15% H₂O per vehicle 90% of manufacturing waste recycled # We make products that displace fossil fuel alternatives. ## Air pollution from burning fossil fuels leads to premature deaths Pollution from burning fossil fuels leads to eight million premature deaths globally each year. That accounts for one-in-five premature deaths worldwide. This is a major advantage of zero-emission products that is often forgotten. Our products are not just about the future of our planet, but also about addressing preventable deaths today. Note: According to recently published research in Environmental Research by Harvard University, in collaboration with the University of Birmingham, the University of Leicester and University College London, air pollution causes over eight million premature deaths annually. #### Fine Particulate Air Pollution in Europe (2023) Source: waqi.info ## Tesla produced and delivered over 1.3 million EVs globally in 2022 Although we are focused on our own deliveries, electric vehicle (EV) sales by all carmakers need to increase. We hope that every vehicle manufacturer will strive to produce hundreds of thousands of EVs per year, as significant reductions in emissions will only be achieved with an industry-wide shift. Emissions credit revenue is used for EV capacity expansion, which in turn displaces internal combustion engine (ICE) vehicles. In 2022, we generated almost \$1.8 billion in revenue selling zero-emission regulatory credits to other original equipment manufacturers (OEMs). While it is common practice today for ICE vehicle OEMs to purchase regulatory credits from other companies (such as Tesla) to offset their emissions, it is not a sustainable strategy. In order to meet increasingly strict regulatory requirements across the world, OEMs will be forced to develop truly competitive EVs. ### A single Tesla vehicle avoids 55 tons of CO₂e over its life After approximately two years of driving, an EV's lifetime emissions are lower than an ICE vehicle's. While EVs today still emit more greenhouse gases (GHGs) during the manufacturing phase, including emissions from the supply chain, it takes less than two years' worth of driving before the total emissions from an EV fall below that of a comparable ICE vehicle. After 17 years of driving—the average life of a vehicle in the U.S.—a single Tesla vehicle will avoid almost 55 tons of CO₂e. This number is conservative for two reasons: it assumes no improvement in grid emissions over time and that an ICE vehicle maintains its fuel efficiency throughout its life. #### **EV Emissions Impact Over Time (U.S.; mt CO₂e)** # In 2022, our customers avoided releasing about 13.4 million metric tons of CO₂e into our atmosphere. #### Average Lifecycle Emissions United States gCO2e/mi* New York gCO2e/mi* ## The carbon impact of ICE vehicles remains the same every year of use The grid keeps getting cleaner, while ICE vehicle emissions do not. Based on publicly available sales and fleet data, we estimate that an average vehicle in the U.S. is scrapped after 17 years and slightly less than 200,000 miles of driving. As an ICE vehicle ages, its fuel efficiency only remains stable if serviced properly. Meanwhile, electricity generation to charge EVs has become "greener" over time with the addition of cleaner energy sources to the grid. EV drivers can increase their renewable energy mix by installing solar energy generation or storage systems on their homes. Source: <u>IEA</u> 2022-2040 Tesla estimate based on recent grid mix shifts. Conservatively assumes no change in federal policy or acceleration of move to renewables in the U.S. for electricity generation. ## Greater efficiency than a Prius, performance of a Porsche Model Y is the most efficient electric SUV Tesla vehicles are among the most efficient EVs built to date. Model Y All-Wheel Drive (AWD) achieves 4.0 EPA miles/kWh, which makes it the most efficient electric SUV ever made. While achieving the best-in-class energy efficiency, our AWD models also provide impressive acceleration and speed. | Model Y Long Range AWD | 4.3 s
0-60 mph | 135 mph
Top Speed | |------------------------|-------------------|----------------------| | Model 3 Long Range AWD | 3.9 s
0-60 mph | 145 mph Top Speed | ## Even after 200,000 miles, our batteries degrade just 12% We often get asked: Will I need to replace my battery at some point in the future? The answer is no. Since we've been selling EVs for over a decade, we have a reliable data set that shows us battery degradation over time. We estimate that a vehicle gets scrapped after approximately 200,000 miles of usage in the U.S. and roughly 150,000 miles in Europe. Even after 200,000 miles of usage, our batteries lose just 12% of their capacity on average. Note: Mileage is only one factor in battery capacity retention; battery age is also a major factor. Retention figures at lower mileages above likely reflect the impact of age while higher mileage values, which come from high-utilization vehicles, likely reflect less influence from battery age. Performance of newer chemistries (not yet shown here) can vary and we plan to expand disclosure once we have sufficient data. #### Reducing our manufacturing footprint ## Producing an EV requires less water than producing an ICE vehicle Each automaker may draw their boundaries slightly differently, depending on how vertically integrated they are. According to the latest publicly available figures, Tesla withdrew less water at facilities dedicated to vehicle manufacturing per vehicle produced than the majority of established automakers. Please see metrics on page 208 in the appendix for more information. #### Water Withdrawal Intensity in Global Vehicle Manufacturing (m³/vehicle) | | Vehicle Manufacturing | Cell Manufacturing | |----------------------------|-----------------------|--------------------| | Gigafactory Berlin (est.)* | 1.80 | 0.48 | | BMW | 1.90 | 0.00 | | Tesla (2022) | 2.57 | 0.00 | | Gigafactory Texas (est.)* | 2.78 | 0.84 | | Mercedes-Benz | 2.91 | 0.00 | | Industry Avg. | 3.68 | 0.00 | | VW Group | 3.75 | 0.00 | | Ford | 3.80 | 0.00 | | Toyota | 4.12 | 0.00 | | GM | 4.54 | 0.00 | | Stellantis | 4.77 | 0.00 | ^{*}Latest estimate for water consumption based on factory design. Actual production figures will not be known until factories are ramped to full production. Other manufacturer water efficiency comes from publicly available data with the latest year available. Source: Latest OEM disclosures ## Setting a new standard for water use per vehicle ## Product Impact BETTER IN EVERY WAY Making EVs Affordable 61-64 Freedom to Travel 65-70 **Maximizing Safety** 71-89 #### Building the Grid of the Future 90-97 \$0.49 per mile total cost of ownership for Model 3 SR, similar to a Corolla 99.95% Supercharger uptime 5-Star rating from NHSTA, Euro NCAP and ANCAP for Model Y \$ Lowest cost per watt solar <0.001% failure rate of energy products 3.1 Making EVs Affordable # Affordability is key to mass adoption. ## Model 3 is the first EV to be priced on par with ICE vehicle equivalents The accessibility of our products is fundamental to our mission. Model 3 is the first EV in history priced competitively with its gas-powered equivalents, even before taking into consideration any regional subsidies and lower running costs. Unfortunately, most other EVs on the market today are often priced at over a \$10,000 premium compared to their direct ICE vehicle equivalents. Even our most affordable Model 3 comes standard with superior equipment and software—such as Autopilot, over-the-air software updates, 4G connectivity and, in our view, the best infotainment system on the market. Starting Price (Before Incentives) Mid-Sized Premium Sedans Model 3 RWD \$39,900 Audi A4 \$40,300 BMW 3 Series \$43,800 Mercedes C-Class \$44,850 ## Model 3 total cost of ownership per mile is similar to a Toyota Corolla While the "sticker price" of Model 3 is similar to an equivalent BMW or Audi, the lifetime running costs of EVs are lower than those of ICE vehicles due to lower maintenance costs, cheaper electricity and the high residual value of used Tesla vehicles. Note: The advantage of having a fleet of vehicles that is constantly online is the ability to analyze real-world data rather than only being able to use estimates. We have an extensive database of Model 3 residual values and cost of repairs, maintenance, energy use, etc. Additionally, the insurance cost for Model 3 RWD is based on the projected median insurance rate in the U.S. for Model 3 drivers. #### **Total Cost of Ownership** 5 years, 60,000 miles #### Model 3 RWD **\$0.49** per mile #### Toyota Corolla* \$0.46 per mile - Depreciation, Taxes, Fees, Incentives & Financing - Insurance - Maintenance, Tires & Repairs - Fuel (Electricity or Gasoline) *Based on 2023 Model Base Trims #### Making EVs even more affordable Our goal is to build and deliver 20 million vehicles a year by 2030. To achieve this goal, we need to make our products even more accessible. Affordability begins with how much it costs us to produce our vehicles. We were able to reduce the cost to build a single vehicle by almost 50% since 2018—with the introduction of Model 3 and Model Y as well as the deployment of new, more efficient factories. And we aren't done yet. During 2023 Investor Day, we outlined our goal of reducing that cost by another 50% with the introduction of our next generation platform. 3.2 Freedom to Travel # Our products are designed to be better in every way. ## We make products that people love Consumers are unlikely to buy products just because they have a low lifetime carbon footprint. They need to be better in every way—safer, more affordable, faster and more fun. We are not just trying to build "green" products; we are committed to building the best products, period. #### Chargers that just work #### Exceeding safety standards across four continents | | NHTSA | II <mark>H</mark> S
LDI | EURO NCAP | ANCAP SAFETY | 中国保险汽车安全指数 | |---------|------------------|----------------------------|--------------------------------|--------------------------------|---| | Model 3 | ★★★★ 2022 | 2022 TOP SAFETY PICK+ | Best in Class 2019 ★★★★★ 2022 | Top Performer 2019 ★★★★★ 2022 | Top Rating Occupant Safety Active Safety 2021 | | Model Y | ★★★★ 2022 | 2022 SAFETY PICK+ | Best in Class ★★★★★ 2022 | Top Performer ★★★★★ 2022 | Top Rating Occupant Safety Pedestrian Safety Active Safety 2021 | | Model S | | | Best in Class ★★★★★ 2022 | | | | Model X | | | Best in Class 2019 ★★★★★ | | | #### Highest score awarded Euro NCAP Overall Score 2020-2022 protocol 92% Model Y 92% Model S #### 3% higher than the second highest manufacturers | Lexus NX | Lexus RX | Mercedes-EQ EQE | |----------------|-----------------|-------------------| | 89% | 89% | 89% | | Subaru Outback | Genesis G80 | Mercedes-EQ EQS | | 89% | 88% | 88% | | Nissan Qashqai | Polestar 2 | smart #1 | | 88% | 88% | 88% | | WEY Coffee 01* | WEY Coffee 02* | Hyundai IONIQ 6 | | 88% | 88% | 87% | | Mazda CX-60 | Mercedes-Benz C | Mercedes-Benz GLC | | 87% | 87% | 87% | | NIO ET7 | Nissan X-Trail | ORA Funky Cat | | 87% | 87% | 87% | *Great Wall Motors ## Not all active safety systems are created equal The range of sensors, compute power and quality of software in Automatic Emergency Braking (AEB) systems can vary dramatically across all vehicle makes and models. Our active safety features are powered by eight cameras, a neural-net computer and learnings from our fleet of over four million cars. Built on a deep neural network, Tesla Vision deconstructs the vehicle's environment at greater levels of reliability than classical vision processing techniques can. Model Y is our latest vehicle to earn a five-star safety rating from the European New Car Assessment Programme (Euro NCAP). As part of this assessment, Model Y received the highest overall score among any vehicle tested under Euro NCAP. Model S and Model Y both received the highest overall safety scores among every vehicle tested by Euro NCAP in 2022. #### **Safety Assist Rating** ¹ 2019 Safety Assist Ratings | EURONCAP | Model X 94% ¹ | Model 3 94% ¹ | Model Y 98% ² | Model S
98% ² | |-----------------|--------------------------|--------------------------|--------------------------|-----------------------------| | ANCAP
SAFETY | 94% 1 | 94% 1 | 98% ² | Not Rated | | IIHS | Not Rated | Superior | Superior | Not Rated | ² 2022 Safety Assist Ratings #### **Euro NCAP Safety Assist Rating** 2022 | Tesla Model Y | 98% | NIO ET7 | 95% | BMW 2 Series AT | 92% | |---------------|-----|---------------|-----|-----------------|-----| | Tesla Model S | 98% | WEY Coffee 01 | 94% | BMW X1 | 92% | | | | ORA Funky Cat | 93% | Lexus NX | 91% | | | | Nissan Ariya | 93% | Subaru Solterra | 91% | | | | WEY Coffee 02 | 93% | Toyota bZ4X | 91% | #### Safety is enhanced when Autopilot is engaged Number of Vehicular Accidents Per Million Miles (2022) Tesla Vehicles 0.18 **Autopilot Engaged** Mostly Highway Miles Tesla Vehicles 0.31 FSD^{Beta} Engaged Mostly Non-Highway Miles Tesla Vehicles 0.68 No Active Safety 1.53 Total U.S. Vehicle Fleet* *Based on our data of Tesla vehicles and NHSTA data of vehicles For more information about our methodology, see our Vehicle Safety Report. #### Real-World Crashes Measured by Impact 3.4 Building the Grid of the Future # Tesla Energy is a one-stop shop. #### An entire ecosystem We have an entire ecosystem of energy products including hardware and software across generation and storage. We also have project management capabilities and a strong deployment track record of getting projects done on time. Our energy products can serve many purposes, including reducing emissions, helping to prevent grid outages and acting as backup power if the grid does go down. Customers can enjoy a seamless experience whether they are a homeowner looking to achieve energy independence or a utility developer looking for the most cost-effective and reliable energy solutions. Pairing energy storage with renewables enables cost-effective stabilization and decarbonization of the grid. ## Renewables & energy storage are already cost competitive Megapack is cheaper per MWh than many fossil fuel alternatives. A single Megapack XL has almost 4 MWh worth of battery storage capacity, and given its scalability, enables projects over 1,000 MWh. In 2022, in order to meet demand that is well in excess of supply for energy storage products, Tesla completed a new production facility, called Megafactory, capable of producing 40,000 MWh of energy storage per year. We also announced another Megafactory in China in early 2023. Megapack + renewables is cheaper than other conventional solutions #### **Zero Direct Emissions** Unlike fossil fuel peaker plants, battery storage has zero direct emissions #### **Built-In Safety** Our energy storage products are manufactured with hardware and software safety features #### 24/7 Monitoring Early detection, diagnosis and troubleshooting of system errors and Live Support for safety events #### **Exceeds Standards** Safety is our top priority, and we continuously review, test and update our requirements and procedures #### **Proactive Fire Control** Designed to prevent battery fires (thermal runaway) and be resilient if they occur #### Best-In-Class Performance Highest energy and power density in the industry, upwards of 300 MWh per acre #### Less than 0.001% failure rate Safety is always our priority and we continue to review, test and update our safety requirements and procedures ahead of industry standards. Failure rates of Tesla energy storage products are extremely low, and are lower than serious transformer fires.* The risk of battery fires, as with all energy infrastructure, is never zero. If we account for all our energy products since inception, the failure rate is <0.001%. We expect this number to keep decreasing as we continually improve our products with over-the-air updates. *Source: T&D World ## People & Culture OUR EMPLOYEES ARE CRITICAL TO ACHIEVING OUR MISSION **Attracting Talent** 100-108 Building the Best Workplace 109-122 Compensation 123-131 #### Social Impact 132-136 3.6 M applications ~128,000 employees 67% U.S. employees from underrepresented groups 71% internal leadership promotions 9.4 yrs median tenure of senior management ## Our employees are critical to our mission to accelerate the world's transition to sustainable energy To sustain our pace of innovation, we must ensure we attract, develop and retain a talented workforce with ample opportunity to contribute to our mission and grow professionally. Our greatest asset is our people. We are committed to providing a workplace where our employees feel respected, satisfied and appreciated. Our policies are designed to promote fairness and respect for everyone. We hire, evaluate and promote employees based on their skills and performance. ## We grew by 29,000 employees last year globally To shift humanity away from fossil fuels, we need extreme scale. Headquartered in Texas, we operate six huge, vertically integrated factories across three continents. Our teams design, build, sell and service our products in-house. As of December 31, 2022, our full-time count for our employees and our subsidiaries' employees worldwide was almost 128,000—a 29,000 year-over-year increase. Half of our workforce is in manufacturing roles with a focus on building our products. | 2022 | 127,855 | 2015 | 13,058 | |------|---------|------|--------| | 2021 | 99,290 | 2014 | 10,161 | | 2020 | 70,757 | 2013 | 5,859 | | 2019 | 48,016 | 2012 | 2,964 | | 2018 | 48,817 | 2011 | 1,417 | | 2017 | 37,543 | 2010 | 899 | | 2016 | 30,025 | | | ## Engineering students want to work for Tesla and SpaceX more than any other organization At Tesla, meaningful engineering ideas can come from interns, analysts or executives. We strive to minimize red tape so our engineers can be creative and solve engineering problems that have never been solved. According to Universum's 2022 U.S. rankings. #### U.S. Engineering Students' Rankings Universum 2022 | 1 | SpaceX | 11 | General Motors | |----|------------------|----|----------------| | 2 | Tesla | 12 | Toyota | | 3 | NASA | 13 | Ford Motor | | 4 | Lockheed Martin | 19 | BMW Group | | 5 | Boeing | 20 | Intel | | 6 | Apple | 26 | Nvidia | | 7 | Google | 28 | Honda | | 8 | Microsoft | 29 | Blue Origin | | 9 | Northrop Grumman | 34 | IBM | | 10 | Raytheon Tech | 38 | AMD | ## We received 3.6 million job applications in 2022. ## We strive to have the safest and healthiest operations in the world Our EHS&S teams continuously work to ensure a healthy and safe workplace. We actively engage employees to identify risks before accidents occur and base our programming on three pillars: do the basics right, engage and empower stakeholders and reduce risk. We no longer measure global operations using the U.S. OSHA record-keeping guidelines. Instead, we follow the international standard organization consensus American Society for Testing and Materials 2920–19. EHS&S: Environmental, Health, Safety and Security DART: Days Away and Restricted Time BLS: Bureau of Labor Statistics OSHA: Occupational Safety and Health Administration ASTM: American Society for Testing and Materials # We are a majority-minority company with 67% of U.S. employees from underrepresented groups We are proud to be a majority-minority company with a large representation of employees from communities that have long struggled to break through the historic roadblocks to equal opportunity in the U.S. In 2022, we continued with regular diversity data reviews across our organization with the goal of attracting, developing and retaining talent. Executives review demographic data for their organizations and work on action planning with a team that includes their DEI business partner, HR business partner and recruiter. #### U.S. benefits #### SafetyNet Limited financial assistance for employees experiencing temporary hardship #### Back-Up Care Five days of back-up child care or elder care for employees #### **Employee Perks** Preferred pricing on gym memberships, financial services, childcare and travel as well as savings on Tesla products #### Rethink Resources for families with children who have learning, social or behavioral challenges ## 16 Weeks of Paid Family Leave Employees spending time with their family after the birth or adoption of a child #### Family Services Including fertility services, adoption and third-party reproduction services ## Supply Chain WE SOURCE FROM SUPPLIERS THAT RESPECT HUMAN RIGHTS AND PROTECT THE ENVIRONMENT Our Approach 139-145 Battery Supply Chain 146-163 **Priority Materials** 164-185 #### Data Systems 186-191 +008 suppliers engaged in responsible sourcing 12 materials with increased visibility 3X increase in direct supplier audits 3 GHG hotspot analyses completed to cover our cathode chemistries 1st worldwide Battery Passport piloted #### Our 2022 Program Highlights #### Engagement Engaged with 800+ suppliers on environmental and social topics, proactively and directly #### Expectations Added stricter supplier expectations in our contracts and policies #### Tracking Increased measurable improvement on environmental and social issues in our supply chain #### Visibility Increased visibility into 12 material supply chains #### **Audits** Tripled the number of direct supplier audits and maintained the number of battery supply chain audits #### **Production Control** Increased the amount of material directly sourced from nickel, lithium and cobalt producers #### We align with industry best practices We source responsibly according to the Organisation for Economic Co-operation and Development (OECD), Responsible Business Conduct (RBC) Framework, the OECD Due Diligence Guidance for Responsible Mineral Supply Chains and the United Nations Guiding Principles (UNGPs) on Business and Human Rights. As risks evolve, we continually review our approach to due diligence with the goal of improving our efforts to identify and mitigate risk as well as have the same expectations for our suppliers. Policies applicable to all suppliers and embedded into the General Terms and Conditions: - 1. Tesla Responsible Sourcing Policy*: Tesla's public commitment to responsible sourcing - 2. Tesla Supplier Code of Conduct: Tesla's expectations for our suppliers - 3. Global Human Rights Policy*: Tesla's commitment to uphold respect for human rights—training on human rights in recognition of Human Rights Day held on Dec 11, 2022 ## An EV's lifetime CO₂e is less than a comparable ICE vehicle With today's electricity grid, an EV's supply chain emits approximately four tons more than a comparable ICE vehicle's supply chain. This is mostly due to the emissions associated with an EV's battery; however, this upfront "investment" of CO₂e gets paid back after approximately two years of driving the vehicle. After that, an EV's lifetime CO₂e is less than a comparable ICE vehicle, ultimately resulting in ~55 tons of CO₂e savings over the lifetime of the EV. This savings will only get better over time as the EV supply chain and the grid used to charge EVs get cleaner through technological innovation, renewable energy deployment and increases in recycled battery materials. #### Reporting Tesla's 2022 Scope 3 Emissions (Category 1, 4)* *Categories are: (1) purchased goods and services, (4) upstream logistics For specific efforts on how to calculate and reduce GHG emissions in the battery supply chain, see pages 156–159. ### Our batteries rely on critical minerals Batteries drive Tesla's sustainability mission. Our cathodes and anodes contain critical minerals like lithium, nickel, cobalt, copper, graphite, manganese, iron and phosphorus. Lithium, nickel and cobalt play an essential function in improving vehicle range and safety performance. While the relative amount of minerals needed for each cathode chemistry varies, Tesla's cell production growth rate will increase our demand for primary mined minerals—these are essential for the transition to sustainable energy. \$ Significant part of battery cell costs = lithium, nickel and cobalt #### Direct sourcing Direct sourcing from mining and refining companies allows us to engage in environmental and social issues in local contexts—instead of having to rely on companies that typically sit between EV manufacturers and mining. This enables more transparent and traceable supply chain data. All contracts include binding environmental and social requirements. Nickel and cobalt saw year-over-year increases. ## Hotspot analyses help prioritize Tesla's GHG efforts #### Contribution to CO₂ Impact per kg #### Lithium Chemical Processing Primary Extraction 69% 17% Upgrading Transportation 10% 5% #### **Nickel** Chemical Processing Primary Extraction 69% 18% Upgrading Transportation 10% 3% #### Cobalt Chemical Processing Primary Extraction 77% 6% Upgrading Transportation 13% 4%